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o54 IS REQUIRED TO TRANSCRIBE A DIVERSE
SET OF GENES

In addition to the most abundant sigma factor, both
gram-negative and gram-positive eubacteria employ alterna-
tive sigma factors that confer different promoter specificities
on the core form of RNA polymerase (reviewed in reference
49). Several bacteriophages that infect each of these groups
also encode sigma factors. Some of the alternative sigma
factors allow transcription of genes whose products contrib-
ute to a common physiological response. For example, u2 of
enteric bacteria allows transcription of genes whose prod-
ucts are needed for protection from heat shock and certain
other stresses (42, 76). Sigma F of enteric bacteria (2) and U28
of Bacillus subtilis (47, 48), both of which confer the same
promoter specificity on core polymerase, allow transcription
of genes whose products are required for motility and
chemotaxis. Some sigma factors allow transcription of genes
whose products are required at a precise time, for example,
at a particular time after bacteriophage infection (40, 64) or
during the sporulation process of B. subtilis (73, 77). (54
differs from other alternative sigma factors in that it is
needed for transcription of genes whose products have
diverse physiological roles (9, 27, 62, 111).

cr54 (encoded by ntrA [glnF, rpoN]) was identified as a
positive regulatory factor needed for expression of the gene
encoding glutamine synthetase, ginA, in enteric bacteria (39;
reviewed in reference 74). It was later found to be required
for expression of other genes whose products function in the
assimilation of nitrogen. For example, r54 is required for
transcription of genes encoding amino acid transport com-
ponents and degradative enzymes (1, 117; reviewed in
reference 78) and genes whose products are needed for
biological nitrogen fixation (75; reviewed in references 28
and 44). It is required for transcription of the nitrogen
fixation (nij) genes from a number of bacteria, including
Klebsiella pneumoniae (28, 44), Rhodobacter capsulatlus
(63a, 79; reviewed in reference 45), and members of the
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genera Azotobacter (114, 125), Azospir illlim (99), Rhizobium
(44, 111), and Bradyrhizobiium (31).

Recently, it has become apparent- that &54-holoenzyme
transcribes genes whose products have different physiolog-
ical functions (Table 1). Examples of such genes are (i) the
dctA gene of rhizobia (111), which encodes a transport
component for dicarboxylic acids; (ii) genes on the TOL
(toluene) plasmid of Pseudomonas putida that encode pro-
teins required for catabolism of toluene and xylenes (27, 57,
101); (iii) genes encoding two of the components of a
formate-degradative pathway in Escherichia coli (9); (iv)
genes encoding hydrogenases responsible for the oxidation
of molecular hydrogen in Alcaligenes eutrophus and Pseiu-
domonas facilis (52, 105, 106, 127; J. Warrelmann, D.
Romermann, and B. Friedrich, personal communication);
(v) genes encoding the hook and filament proteins of Caulo-
bacter flagella (85, 89, 94); and (vi) genes encoding pilins in
Pseudomonas aeruginosa (59, 61) and Neisseria gonor-
rhoeae (84) that allow these organisms to adhere to human
epithelial cells (121, 128, 131). In the first four cases and in
the case of the Pseudomonas pilin gene, the requirement for
r5' has been demonstrated directly by showing that tran-
scription does not occur in mutant strains that lack this
sigma factor (9, 27, 59, 106, 111; Table 1). In the latter two
cases, the evidence for dependence on o54 is less direct
(Table 1). Although it has been proposed that transcription
from the major promoter for the puf photosynthetic operon
of Rhodobacter capsulatus is u54 dependent (4), we think
that this is unlikely because the proposed promoter lacks the
minimal conserved features common to or54-dependent pro-
moters (see below; reviewed in references 28 and 44).
Moreover, disruption of the nifR4 gene, which was recently
demonstrated to encode a &r54 homolog in Rhodobacter
capsulatus (63a), does not cause defects in photosynthesis
(45; R. Kranz, personal communication).

INITIATION OF TRANSCRIPTION BY Cr54-
HOLOENZYME DEPENDS ON ACTIVATOR PROTEINS

&r54-Holoenzyme (U54 associated with core RNA polymer-
ase) recognizes and binds to the major ginA promoter. (All
promoters that are recognized by o-54-holoenzyme are char-
acterized minimally by a conserved GC doublet that lies
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between 11 and 14 base pairs [bp] upstream of the transcrip-
tional start and a conserved GG doublet that lies exactly 10
bp farther upstream [reviewed in references 28, 44, and 62;
D. Popham and S. Kustu, manuscript in preparation].)
However, recognition complexes between or54-holoenzyme
and the glnA promoter (closed complexes) are nonproduc-
tive transcriptionally because the DNA remains double
stranded (74, 100, 116). Initiation of transcription requires an
activator protein called NTRC, also known as NRI (encoded
by ntrC [glnG] [reviewed in reference 66]). NTRC binds
upstream of the promoter to sites that have the properties of
transcriptional enhancers (95, 103). It catalyzes the isomer-
ization of closed complexes between &54-holoenzyme and
the glnA promoter to transcriptionally productive open
complexes in which the DNA strands are locally denatured
in the region of the transcription start site (100, 116). The
isomerization reaction requires ATP (100).
As is true for glnA, transcription of a number of other

u54-dependent genes requires an activator. For example,
transcription of nif genes in a variety of bacteria requires the
activator protein NIFA (5, 13, 31, 79, 115, 123; reviewed in
reference 44). Similarly, transcription of the dctA gene is
dependent on DCTD (108, 109), transcription of the xylCAB
and xylS genes requires XYLR (references 27, 57, 101, and
118 and references cited therein), and transcription of the
hox (hydrogen oxidation) genes is dependent on the product
of a gene in the hoxC locus (30, 36, 71, 106).

Like NTRC, other activators of c-54-holoenzyme (NIFA
[6, 7, 11, 14, 15, 88; reviewed in reference 44] and DCTD
[B. T. Nixon, personal communication]) bind to sites lo-
cated at least 80 bp away from the promoters they regulate.
In several systems for which the specific activator has not
yet been identified (E. coli formate hydrogen lyase, C.
crescentus hook protein, and P. aeruginosa pilin), a require-
ment for upstream sequences that could serve as activator
binding sites has nevertheless been demonstrated (10, 89, 90,
97a). It therefore seems likely that transcription by (J54-
holoenzyme will prove to depend on an activator in these
other cases, and it is an attractive speculation that this will
be true in every case (9, 100, 111).
The activator proteins whose sequences are known

(NTRC, NIFA, DCTD, and XYLR) show a high degree of
sequence similarity within their central domains (domain D
of reference 29), each of which contains a putative ATP-
binding site (regions 1 and 3 in reference 37; 58, 109). (The
central domain spans -240 amino acid residues [16, 29], of
which 30% are identical in each of the four activators-
NTRC and NIFA from K pneumoniae, DCTD from R.
leguminosarum, and XYLR from P. putida [58, 109].)
Eleven independent mutant forms of Salmonella NTRC that
are specifically defective in the ability to activate transcrip-
tion (129) have amino acid substitutions within the central
domain; moreover, the substitutions affect residues that are
identical in the four activators, including residues that con-
stitute the proposed ATP-binding site (D. Weiss and S.
Kustu, unpublished data). These results indicate that the
central domain of NTRC is specifically required for forma-
tion of open complexes between r54-holoenzyme and the
glnA promoter. Sequence similarity among the activators is
consistent with the simple hypothesis that they all function
in a similar manner. Interestingly, truncated forms of the
NIFA protein from Rhizobium meliloti that retain only the
central domain appear to retain the ability to activate tran-
scription from the Rhizobium nifH promoter (53).
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FUNCTION OF ACTIVATOR PROTEINS IS
CONTROLLED BY DIFFERENT PHYSIOLOGICAL

SIGNALS AND DIFFERENT MECHANISMS

Control of transcription at a54-dependent promoters ap-
pears to be accomplished primarily by modulation of the
activity state of activator proteins (see below; Table 1) and
their abundance (57; reviewed in references 28, 44, and 74).
The amount of Cr54 does not vary much, at least under
different conditions of nitrogen availability (19, 26, 83, 111).
Each activator allows &54-holoenzyme to initiate transcrip-
tion in response to a distinct physiological signal, such as (i)
limitation of combined nitrogen (NTRC as activator [re-
viewed in references 66, 78]); (ii) low oxygen tension (NIFA
as activator [8, 25, 28, 32, 33, 44, 50, 72, 81, 126]); (iii)
availability of dicarboxylic acids, presumably external to the
cell (DCTD as activator [107, 109]); (iv) availability of
toluene, xylenes, or their alcohol catabolic products (XYLR
as activator [34, 57, 91, 101, 132]); (v) energy limitation
(product of a gene in the hoxC locus as activator [30, 35, 36,
71]); and (vi) presence of formate under anaerobic conditions
(activator unknown [9, 10]). It will be of interest to under-
stand the nature of the signals that regulate transcription of
the Caulobacter hook and flagellin genes, expression of
which is controlled by a complex regulatory hierarchy (12,
20, 21, 22, 92, 97) and occurs in a cell cycle-dependent
manner (85, 97).

Function of the activators themselves is apparently con-
trolled by a variety of mechanisms. NTRC is synthesized in
an inactive form, and its activity is regulated positively and
negatively by phosphorylation and dephosphorylation, re-
spectively, of its NH2-terminal domain (65, 93). This domain
(-120 amino acids) appears to control the ability of the
central domain to activate transcription by &r4-holoenzyme
(65, 96, 112). The degree of phosphorylation of NTRC is
increased under nitrogen-limiting conditions. NTRC is a
member of a two-component regulatory system (70, 96, 112)
and is phosphorylated by its partner NTRB, also known as
NRII (encoded by ntrB [glnL]). Like NTRC, the DCTD
protein of rhizobia is a member of a two-component regula-
tory system, and therefore it is probably activated by phos-
phorylation by its partner DCTB (109); phosphorylation is
thought to increase in response to availability of external
dicarboxylates. Unlike NTRC and DCTD, the NIFA protein
is apparently synthesized in an active form (8, 13, 33). In K.
pneumoniae, it is inactivated by the NIFL protein (mecha-
nism unknown) in response to molecular oxygen or com-
bined nitrogen (50, 81; reviewed in references 28 and 44). In
Bradyrhizobium japonicum (32, 33) and Rhizobium meliloti
(8), NIFA is inactivated at high oxygen tensions by a
mechanism(s) that does not involve NIFL or any other
nif-specific protein. Finally, the XYLR protein of P. putida
appears to be activated directly by binding low-molecular-
weight substrates of the xylene catabolic pathway (27, 34,
57, 91, 101, 132). Thus, function of the activator proteins that
control transcription by &r54-holoenzyme is highly regulated.
For different activator proteins, it is regulated by different
mechanisms.

THE SEQUENCE OF r54 HAS UNIQUE FEATURES

As discussed above, cr54 confers on core RNA polymerase
the ability to bind specifically to a promoter (a minimal
definition of a sigma factor) but it apparently does not confer
the ability to form open complexes. In this regard it is
interesting that ar54 shows little amino acid sequence similar-

ity to other sigma factors (63, 80, 82, 111) (of which -15 have
now been identified [49]), whereas these share several re-
gions of amino acid sequence similarity with each other (41,
49, 120). Rather, (54 has a glutamine-rich region at its amino
terminus that resembles the glutamine-rich region required
for activation of transcription by mammalian transcription
factor Spl (23). (In different organisms, between 15 and 25%
of the first 50 residues of U54 are glutamine [63a, 80, 82, 114].)
S. Sasse-Dwight and J. D. Gralla have determined that the
glutamine-rich region of o54 iS specifically required for
NTRC-dependent isomerization of closed to open com-
plexes at the glnA promoter (personal communication).
Small deletions in this region allow the formation of closed
recognition complexes at ginA but prevent the formation of
open complexes.

CONCLUSIONS
( 54 has physiologically diverse roles and in this way

resembles the most abundant sigma factor in eubacterial
cells (a70 and its homologs) rather than other alternative
sigma factors. A direct line of evidence for physiological
diversity is that mutant strains which lack ur54 have pleiotro-
pic phenotypes. For example, such mutant strains of A.
eutrophus (105; Warrelmann, Romermann, and Friedrich,
personal communication), which were designated hno-, for
"hydrogen, nitrate and other things" (52, 105), fail to
express not only hydrogenases required for utilization of
molecular hydrogen as an energy source but also enzymes
required for utilization of urea and formamide as nitrogen
sources and a dicarboxylate transport system; they have
defects in several additional functions as well. u54-Deficient
strains of E. coli, R. meliloti, and P. aeruginosa also have
physiologically pleiotropic phenotypes (9, 59, 111; Table 1).
The properties of mutant strains that lack o-54 indicate that

this sigma factor is not essential for bacterial viability under
all conditions (39, 59, 105, 111, 114, 125). As discussed
above, however, r54 is required for several important bio-
logical processes. It is required for the autotrophic growth of
P. facilis (106, 127) and for that of A. eutrophus with
molecular hydrogen as an electron donor (52, 105, 106). r54
is required for biological nitrogen fixation in a variety of
gram-negative bacteria (Table 1) and, in addition, is needed
for the establishment of stable symbiotic relationships be-
tween bradyrhizobia (31), rhizobia (123, 133), and their plant
hosts (Table 1). r54 would appear to be required for the
formation of functional swarmer cells in C. crescentus
(Table 1) and for virulence of N. gonorrhoeae (67, 68, 121,
128) and P. aeruginosa (59, 131).

Transcription by &r54-holoenzyme appears to be controlled
by a common mechanism: use of an activator protein and
ATP to catalyze formation of transcriptionally productive
open complexes (100). It is the activator proteins that allow
cr54-holoenzyme to respond to diverse physiological signals.
The selective advantage to use of C54 and this mechanism, if
any, remains to be determined (27, 111).
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